線形化 |
電子密度 ne = no + ne1(r,t)
イオン密度 ni = no で線形化
運動方程式
me |
 |
ve1 =
-qH
EH
|
ガウスの法則
連続の式
 |
ne1 + no ▽ ve1 = 0 |
もう一度時間微分して質量を掛け
me |
  |
ne1 + no ▽ ( me |
 |
ve1 ) = 0 |
運動方程式を代入
me |
  |
ne1 + no ▽ (
-qH
EH ) = 0 |
ガウスの法則を代入
me |
  |
ne1 - noqH (
-ne1 qH
) = 0 |
  |
ne1 +
( noqH2/me ) ne1 = 0 |
ne1 として exp( iωt ) の形の解を仮定すれば
プラズマ周波数
ωp2 =
( noqH2/me )
続く
|
単に
 |
=qH |
を代入しても出るよ
|